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I. Space-translated Schrödinger equation

Standard Schrödinger equation for lab frame:
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  Ψ =  i 

∂Ψ
∂t     .

Laser pulse propagating in direction n, with
retardation:

       A(τ)     ,     τ ≡ t - (r · n) /c   .

Dipole approximation:  A(t).

Typical pulse form:   A(t) = A0 f(t) sin  t ;

f(t) , pulse envelope (Gaussian, hypsec, etc.).



NR classical electron motion:

       NR t( ) = − e

mc
A t'( )

−∞

t

∫ dt'  ;

initial conditions: NR(0) = (d NR / dt) 0 =  0 .

Apply time-dependent space translation:

r ⇒  r  +  NR(t)

Defines "oscillating reference frame".
Classical electron at rest in the origin.

Space translated Schrödinger (STSE) equation:

[ 
1

2m
P2+  V(r + NR(t))] Ψ' =  i 

Ψ'
t

.



STSE, quite successful concerning
physical insight & numerical integration.

For example: NR atomic stabilization in
intense laser fields (1990).

At low intensity I,  perturbation theory
predicts growth of ionization with intensity.
Intuitive.

Pert.Th. breaks down at some I.
Nonperturbative methods needed.

Surprise: ionization starts to decrease
with I.  Counter-intuitive.

Dynamic stabilization (DS), stabilization of
ionization probabilities.

Fig.1 : Pion for pulses with fixed Gaussian
shape, when amplitude E0 grows, at various
frequencies ω; from Dondera et al (2002), and
Stroe et al (in progress). DS at high (ω > 0.5 au)
& low (ω > 0.5 au) freq.
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II. Relativistic domain

What happens when ampl. E0 is extremely large?

Relativity enters the scene via:

retardation
(variation of radiation phase within atom)

& relativistic dynamics
(law of motion changes from NR case).

The force on electron has now the Lorentz form:

FL =  e E + 
1
c

v × H

Classically: forward drift (in direction n).
The electron no longer returns to the origin at the
end of the pulse.



Clasical relatativistic motion of an electron:

⊥ t( ) = − e

mc
A( )

−∞

t− z / c

∫ d

z t( ) = e2

2m2c3 A2( )
−∞

t− z / c

∫ d

Q.M. argument:

The center of the electron wave packet can be
pushed far from the center of atom (Ehrenfest
theorem); has finally no more overlap with the
atom. Atomic survival & stabilization decrease.

ATI and HHG acquire new features.

Under relat. cond. Dirac eq should be used.



III. Dirac equation

Equation for lab frame (standard spin repres):

c ⋅ P − e

c
A( ) 

   
  + mc2 + V r( ) 

  
 
  Ψ = i

Ψ
t

Ψ : 4 - comp "spinor"  (Ψ1 ,Ψ2 ,Ψ3 ,Ψ4)
, β :  4 × 4  anticomuting matrices

In a few cases can be solved analytically,

in many others numerically.

No numerical solution possible yet for case of

potential V(r) and intense A(τ)  in 3D !



IV. GSTDE

Various approximate methods to treat the
Dirac eq. (SFA etc.), or 1D models (numerically).

We have adopted a different approach,
presented in the following.

We ≡ M. Boca, V. Florescu, M. Gavrila.

Is it possible to generalize the NR space
translation operation to the relativistic case ?

Indeed, it is possible. But not as a simple
space translation. Rather, as a transformation by
a unitary operator: T(t).

T(t) defined as transforming the set of
Volkov states into the set of free particle states
(without the field).



Case of monochromatic, plane wave field
considered by Krstic & Mittleman (PRA 1990).

We (BFG) have considered laser pulse case.

As a result, we finally obtain the generalized
space-translated Dirac eq (GSTDE):

V' = T† V T

T and V' complicated integral operators.

GSTDE intractable in general case of an
arbitrary relativistic situation.



Our goal: Apply Dirac equation to superintense

laser-atom interactions (structure, ionization,

laser-assisted collisions, etc).

Implies an initial cond. with :

low momenta p (p/mc << 1), small Z atoms

(αZ << 1), NR photons  ( ω << mc2 ).

Phenomena can become, nevertheless, relativistic

during the interaction: the field forces the

electron to oscillate with v  c velocities in lab

frame.

Our approach: study the motion with GSTDE,

for superintense laser-atom interactions with NR

initial conditions. Field can be arbitrarily intense.



We work within mathematical framework of:

"Low-Momentum Regime (LMR)".

Definition: Spinor Φ(r) is LMR if its Fourier

expansion has a high momentum cut-off at ϖ ,

such that  ϖ/mc << 1 .

Question: Is it possible that a solution Ψ'(t) of

GSTDE, that is initially LMR, maintains this

property at all t ?

(The laser pulse might modify its LMR character

in time !)

We show that surprisingly the answer is

affirmative !



As a consequence, GSTDE splits into two

independent Pauli eqs. One describes wave

packets with electronic initial conditions, the

other w. p. with positronic initial cond. With

spin ignored, these Pauli eqs. reduce to

generalized Schrödinger eqs. Electronic case:

[ 
1

2m
P2+  V(r + e(τ))] Ψ' =  i 

Ψ'
t

.

General Conclusion:

Under LMR initial conditions (with spin
ignored), GSTDE is equivalent to a generalized
Schrödinger equation at all t.

Our eq. contains all the physical information
contained in the Dirac eq. for current laser-atom
interactions.



The eq. looks somewhat similar to the STSE.

The difference resides in the form of the

generalized potential.

As opposed to the Dirac eq., the BFG eq. is

numerically tractable. A program has been

developed by M. Boca & H.G. Muller (FOM

Amsterdam) for its solution

BFG eq. is now being applied to physical

processes.



Generalized Coulomb potential:

Has moving singularity rs(t); this evolves along

the space reflected trajectory of the classical
electron. V'C  can undergo large time-dependent
distortion.

Figs. 2 and 3 describe the case of :
ω = 0.05 au; E0 = 10 au; Gauss pulse, τ = 1cy

Fig.2 shows the time-dependence of el.
field E(t) of pulse.

Fig.3 shows the trajectory of the singularity
of V'C  in the x (el. field), z(dir. of propag) plane.
Also shown: level lines of V'C in same plane, at
some  t, multiples of T=2π/ω.
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Fig.3  Generalized Coulomb Potential
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