ATOMIC IONIZATION by INTENSE XUV LASER PULSES of SHORT DURATION

M. Dondera

University of Bucharest, Faculty of Physics, Bucharest-Magurele RO-077125, Romania

"EXTREME LIGHT INFRASTRUCTURE" - un nou impuls pentru cercetarea stiintifica multidisciplinara, Bucuresti-Magurele, INFLPR, 17-18 Septembrie, 2008

Workshop in cadrul Conferintei "Diaspora in Cercetarea Stiintifica Romaneasca"

<ロト <回ト < 国ト < 国ト = 国

Motivations and objectives I

Motivations

The interaction between intense laser pulses and matter a subject which received considerable interest along the years. Special attention - given to photoionization: an electron of an atomic system exposed to such a pulse can absorb enough energy to quit the system and to escape to infinity.

A recent and interesting experiment, done at the new free-electron laser in Hamburg (FLASH): Sorokin *et al.*, Phys. Rev. Lett. **99**, 213002 (2007).

The photoionization phenomenon - studied by focusing XUV pulses with duration of $\approx\!10$ fs, wavelength of $\approx\!13$ nm and irradiance levels between 10^{12} and 10^{16} W/cm², on

Motivations and objectives II

free xenon atoms. To produce the ion charges recorded in experiment, a large number of photons is required. Particularly up to 57 photons (in a single shot) for the highest recorded ion charge, Xe^{21+} . Maximum irradiance level used: $I \approx 7.8 \times 10^{15}$ W/cm² $\approx I_0/4.5$, $I_0 \approx 3.51 \times 10^{16}$ W/cm²

From documents of ELI project presentation: -"ELI will provide a new generation of compact accelerators delivering ultra short (10^{-15} - 10^{-18} s) pulses of radiation from EUV to γ -ray and energetic particles beams for European scientists".

Related experience in our group:

ヘロト ヘアト ヘビト ヘビト

Motivations and objectives III

- Dondera, Muller and Gavrila, Phys. Rev. A 65, R31405 (2002)

- Boca, Muller and Gavrila, J. Phys. B: At. Mol. Opt. Phys. **37**, 147 (2004)

Both papers - dedicated to the study of *atomic stabilization*, with emphasis on its dynamic version.

Present work: for the same range of frequencies but for intensities lower than those implied in stabilization and focused on photoelectron properties.

• Atomic photoionization: the road towards a quantitative description

The exact nonpert. study of the phenomenon, in the nonrelativistic quantum mechanics frame, involves:

Motivations and objectives IV

- To accurately describe the time evolution of the state of the atomic system in interaction with the laser pulse
- (The state at every time moment being known) to extract with precision the measurable quantities, as photoelectron distributions in energies and directions - in order to make new predictions or comparisons with experimental results

Both problems - difficult to solve, even for the atom with only one electron!

・ 同 ト ・ ヨ ト ・ ヨ ト

The asymptotic region

• The wave function: continuum superposition of outgoing spherical waves (after the laser pulse end)

Reduced w. func.: $F(\mathbf{r}, t) \equiv r \psi(\mathbf{r}, t)$ (1)

$$F(\mathbf{r},t) = \int_0^\infty f(E,\mathbf{n}) \, e^{i(kr-Et)} \, dE \,, \quad r \to \infty$$
(2)
$$\mathbf{n} = \mathbf{e}_r = \mathbf{r}/r \,, \quad k = \sqrt{2E}$$

Ingoing spherical waves - negligible contribution for $r \to \infty$ (they would descr. el. coming from ∞ towards the origin).

 The amplitudes f - determ. by inv. Fourier transf., from the w. func. as func. of time, for a fixed large value of the rad. r

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Photoelectron distributions

 The total probability for the electron to cross the surface element dS = r²dΩe_r, in a time interval (t₁, t₂) ⇐ from the usual interpretation of J vector

$$d\boldsymbol{p} = \Im \left[\int_{t_1}^{t_2} \boldsymbol{F}^*(\boldsymbol{r}, t) \frac{\partial \boldsymbol{F}(\boldsymbol{r}, t)}{\partial \boldsymbol{r}} dt \right] d\Omega$$
(3)

• The most detailed probability distribution

$$d^{2}p = \frac{k}{2\pi} \left| \int_{t_{1}}^{t_{2}} F(\boldsymbol{r},t) \, \boldsymbol{e}^{i\boldsymbol{E}t} \, dt \right|^{2} \, d\boldsymbol{E} \, d\Omega \quad (\boldsymbol{r} \to \infty) \qquad (4)$$

- Less detailed distributions, in energies or directions can be obtained by appropriate integrations of eq. (4)
- Other possibilities do exist Madsen *et al.*, Phys. Rev. A 76, 063407 (2007)

System, numerical procedure and simulations I

 System: hydrogenlike atom, initially in a stationary state of the type *nlm* with *m* = 0, in interaction with an XUV laser pulse, linearly polarized, described by the vector potential

$$\boldsymbol{A}(t) = \frac{F_0}{\omega} \, \boldsymbol{e}_z \, \boldsymbol{s}(t) \cos \omega t \,, \tag{5}$$

where F_0 is the electric field amplitude and ω is the laser frequency.

Pulse: flat top. The envelope s(t) increases from zero to one as $\cos^2(\pi t/2\tau_{on})$ for $-\tau_{on} < t < 0$, remains constant (equal with one) for a duration τ_{flat} , then decreases to zero as $\cos^2[\pi(t - \tau_{flat})/2\tau_{on}]$ for $\tau_{flat} < t < \tau_{on} + \tau_{flat}$. The parameters τ_{on} and τ_{flat} are chosen as integer multiples of the laser period $T = 2\pi/\omega$.

System, numerical procedure and simulations II

Numerical procedure

The corresp. TDSE - solved on an uniform space-time grid (spherical coordinates r and θ , and time t), using an approximation of the evolution operator. The propagation in time of the wave func. - continued (after the pulse end) until the wave function becomes again "zero". Photoelectron distributions - calculated with eqs. (3) and (4).

• Conditions for numerical simulations Values of parameters:

Z : 1, 3

Initial states: 1*s*, 2*s*, 2*p*, 3*s*, 3*p*, 3*d* $Z = 1: E_1 = -0.5, E_2 = -0.125, E_3 = -0.05555$ $E_1 + \omega = 2.92 > 0$ (a.u.!)

ъ

System, numerical procedure and simulations III

Z = 3:
$$E_1 = -4.5$$
, $E_2 = -1.125$, $E_3 = -0.5$
 $E_1 + \omega = -1.08$, $E_2 + 2\omega = 2.34 > 0$

- $\textit{I}:\textit{I}_0/4.5,\textit{I}_0,\textit{10I}_0,\textit{100I}_0$
- *ω*: 3.42 *a.u.* ≈ 93 eV

$$\tau_{on} = \tau_{off} = 5T$$
, $\tau_{flat} = 40T$.
Total duration: $50T \approx 2.22$ fs

For the highest intensity, $I = 100 I_0$, $\alpha_0 \approx 0.85$ a.u. $a_0 \approx 0.02 \ll 1$

$$\alpha_0 = \frac{\sqrt{l}}{\omega^2}$$
$$a_0 \equiv \alpha \frac{\sqrt{l}}{\omega}$$

3

イロト 不得 とくほと くほとう

Figure 1.i Photoelectron distributions: Z = 1, $I = 10I_0$

Left: angle distribution

Right: energy spectrum

Figure 1.ii Photoelectron distributions: Z = 1, $I = 10I_0$

Left: angle distribution

Right: energy spectrum

Figure 2. Photoelectron angular distributions

Left: Z = 1 Initial states: 1s, 2p and 2s Right: Z = 3

Intensities: $I = I_0/4.5$ (a), $I = I_0$ (b)

Figure 3.i Photoelectron energy spectra

Figure 3.ii Photoelectron energy spectra

500

Figure 3.iii Photoelectron energy spectra

Figure 3.iv Photoelectron energy spectra (excerpts)

Left: Z = 1 Initial states: 1s, 2p and 2s Right: Z = 3

500

Figure 4.i Photoelectron distributions: Z = 1, $I = 100I_0$

Left: angle distribution

Right: energy spectrum

Figure 4.ii Photoelectron distrib.: Z = 1, $I = 100I_0$

Left: angle distribution

Right: energy spectrum

Figure 5.i Energy and angle distributions

Intensity: 10*I*₀ Angles: 1° (a), 31° (b), 45° (c), 91° (d)

Figure 5.ii Energy and angle distributions

Intensity: 10*I*₀ Angles: 1° (a), 31° (b), 45° (c), 91° (d)

Figure 5.iii Energy and angle distributions

Z = 1 Z = 3(a) (a) $d^2 p/dEd\Omega$ $d^2p\!/dEd\Omega$ 10^{-4} 10 (b) (b) $d^2 p/dEd\Omega$ $d^2 p/dEd\Omega$ 10^{-4} 10-8 10 (c) (c) $d^2p/dEd\Omega$ $d^2 p / dE d\Omega$ 10^{-4} 10 10^{-8} 10 (d) (d) $d^2p/dEd\Omega$ 10^{-4} $d^2 p/dEd\Omega$ 10^{-4} 10^{-8} 10^{-8} 2 8 10 0 4 6 0 2 8 10 4 6 E/ω E/ω

Initial state: 2sIntensity: $10I_0$ Angles: 1° (a), 31° (b), 45° (c), 91° (d)

Conclusions

- A recently developed method, based on the asymptotic behavior of the wave function, was applied to determine of photoelectron energy and angular distributions for a laser frequency belonging to XUV regime and intensities around or higher than the atomic unit of intensity.
- The results obtained for a hydrogenlike atom in interaction with an XUV laser pulse demonstrate that at intensities around *I*₀ (or lower) the photoionization is dominated by the absorption of the minimum number of photons (required to ionize the atom).
- Distinct features of photoionization are observed if the (quasi)resonance condition is or is not fullfiled.
- The excess photon ionization (EPI) becomes important for intensities signif. higher than the atomic unit of intensity.