Laser beam characterization and thermal wavefront distortions in optical components

K. Mann

J.O. Dette, W. Hüttner, F. Kühl, U. Leinhos, M. Lübbecke, T. Mey, M. Müller, M. Stubenvoll, J. Sudradjat, B. Schäfer

> Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

Laser-Laboratorium Göttingen

Nanoscopy

Laser-Laboratorium Göttingen e.V.

Optics /

Short wavelengths

Micro Material processing

Dept. "Optics / Short Wavelengths"

Beam and Optics Characterization

- > Optics test (351...193 nm)
 - (Long term) degradation (10⁹ pulses)
 - Non-linear processes
 - LIDT
 - Absorption / Scatter losses
 - Wavefront deformation

- Wavefront
- coherence
- M²

- > EUV/soft x-ray technology
 - Source & Optics
 - Metrology
 - Material interaction

Spectrum of electromagnetic radiation

Table-top EUV source

Ablation / damage thresholds @13.5nm

Laser-Laboratorium Göttingen e.V.

Laser driven EUV/XUV plasma source setup

- 1.2 J/cm² (@ 13,5 nm, 2 % bandwidth)
- > 7.4 J/cm² (filtered by 2 Mo/Si mirrors)

F. Barkusky, K. Mann et al., Optics Express 18, 4347 (2010)

Laser-Laboratorium Göttingen e.V.

Introduction

- Determination of beam parameters (ISO standards)
- Wavefront measurement / analysis of beam propagation
- Wavefront distortion in high power laser optics
- Thermal lensing / Focus shift

Relevant laser parameters:

Laser-Laboratorium Göttingen e.V.

Parameters		Standard
Average power / pulse energy		ISO 11554
Wavelength / spectral band width		ISO 13695
Pulse length		ISO 11554
Polarization		ISO 12005
Beam diameter		ISO 11146
Divergence	6	ISO 11146
Beam profile	tior	ISO 13694
Pointing / pos. stability	gat	ISO 11670
M ² / focusability	pa	ISO 11146
Wavefront / phase distribution	20	ISO 15367
coherence		-

Spatially resolved measurement

Excimer laser beam characterization

Laser-Laboratorium Göttingen e.V.

CARL ZEISS SMT

2131685

 Simultaneous near- and farfield analysis
 @193nm / 6kHz

Near-field far-field profile:

ASML

→ Beam divergence width

Profile Info Options Analysis Data Beam Width Point./Pos.-Stability Histogram Profile Data μm 1.5 0.5 -0.5 -1 -1.5 μm 6636.729 / 16398.652 -COG Field Near µm/µm Scale O Auto 0.812 / 0.735 ստ/ստ Manual #Samples 1000 Process 26%

pointing stability

Caustic measurement (ISO 11146)

Laser-Laboratorium Göttingen e.V.

- lens \rightarrow beam waist - d_{a x y} (2nd moment) = f (z)

Example: Nd:YAG / 1064nm

Caustic of Free Electron Laser FLASH / DESY

Caustic of Free Electron Laser FLASH / DESY

Beam parameter	Value
Waist position z _{0x} / z _{0y} [mm]	131.1 / 132.6
Waist diameter d _{0x} / d _{0y} [µm]	65.5 / 35.9
Rayleigh length z _{Rx} / z _{Ry} [mm]	11.8 / 5.7
Beam propagation factor M ² _x / M ² _y	21 / 13
coherence	???

Focusing of laser-induced soft x-ray plasma

Laser-Laboratorium Göttingen e.V.

> $\lambda = 2.88$ nm (monochromatic) > \rightarrow waist dia. ~ 500µm

Soft x-ray camera

...time-consuming...

Hartmann-Shack wavefront sensor:

EUV wavefront sensor: Optics adjustment at FLASH FEL

Hartmann

Spot distribution:

Wavefront before and after mirror adjustment:

Experimental setup (BL2):

B. Flöter, K. Mann, K. Tiedtke et al. NIM A 635, S108–S112 (2011)

Beam characterization:

Hartmann-Shack wavefront sensor

Laser-Laboratorium Göttingen e.V.

16

Collimated Diode Laser Beam

650 nm, cw, 2 mW

Laser-Laboratorium Göttingen e.V.

Caustic measurement

Hartmann-Shack

Spatial coherence:

Laser-Laboratorium Göttingen e.V.

Young's experiment:

interference of elementary waves

Contrast of fringes

 \rightarrow local degree of coherence $\gamma(\vec{x}, \vec{s})$:

Mutual coherence function

Partially coherent beams: Measurement of Wigner Distribution

Laser-Laboratorium Göttingen e.V.

Mapping of 4D phase space:

⇔ Tomographic analysis of a laser beam

⇒ comprehensive beam characterization

- beam parameters
- coherence function
- mode content
- wavefront

angular characteristics

Optics characterization:

Photo-thermal lens effect ↔ Absorption

Monitoring of 'Thermal lenses':

Chamber

Laser-Laboratorium Göttingen e.V.

- quartz plate \varnothing 25 x 45mm

0/0

- irradiated @193nm, ~100mW/cm²

N₂-Purge

Photothermal setup for quantitative absorption measurement

Laser-Laboratorium Göttingen e.V.

Fused silica HR / AR coatings

➤ 193nm: p (O₂) < 50ppm</p>

Absorption of NIR optics:

Thermal Lens in AR coated BK7 glass

Fiber laser @1070nm / 100W

Thermal wavefront distortion in beam delivery optics

dn/dT: 8.5·10⁻⁶ [1/K]

-10.5[.]10⁻⁶ [1/K]

- Reversal of wavefront deformation
- ightarrow ightarrow possibility for compensation of thermal lensing !

Laser-Laboratorium Göttingen e.V.

Laser beam characterization

- ISO standards

Hartmann-Shack wavefront sensor

- beam propagation for single pulses (M², Strehl, Δ < 5%)
- Wigner distribution \Rightarrow partially coherent beams

> Thermal lensing in beam delivery optics

- New photothermal technique for measurements of *absorption* and *focus shift*
- high sensitivity wavefront sensor
- Examples: wavefront distortions @193nm, @1070nm, @532nm F-Theta obj.

Wavefront Curvature Sensor

Laser-Laboratorium Göttingen e.V.

Wavefront Reconstruction from Intensity Transport Equation:

$$-\partial_{z}I = \nabla_{\perp}I \cdot \nabla_{\perp}w + I \cdot \Delta_{\perp}w \rightarrow w(x, y)$$

Beam splitter
$$(a) = (a) + (a)$$

Thank You !

Laser-Laboratorium Göttingen e.V.

Coworkers:

- Dr. B. Schäfer
- Dr. U. Leinhos
- J.O. Dette
- W. Hüttner
- F. Kühl
- M. Lübbecke
- T. Mey
- M. Müller
- G. Steinert
- J. Sudradjat
- M. Stubenvoll

- Separation of surface and bulk effects
- Measurement at other wavelengths: NIR, EUV, x-ray (FEL)
- Prevention of thermal lensing
 - Reduction of absorption
 - compensation \rightarrow adaptive optics